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Abstract

We describe NIMBLE, a system for programming statistical algorithms for general model
structures within R. NIMBLE is designed to meet three challenges: flexible model specifi-
cation, a language for programming algorithms that can use different models, and a balance
between high-level programmability and execution efficiency. For model specification, NIM-
BLE extends the BUGS language and creates model objects, which can manipulate variables,
calculate log probability values, generate simulations, and query the relationships among vari-
ables. For algorithm programming, NIMBLE provides functions that operate with model ob-
jects using two stages of evaluation. The first stage allows specialization of a function to a
particular model and/or nodes, such as creating a Metropolis-Hastings sampler for a particular
block of nodes. The second stage allows repeated execution of computations using the results
of the first stage. To achieve efficient second-stage computation, NIMBLE compiles models
and functions via C++, using the Eigen library for linear algebra, and provides the user with
an interface to compiled objects. The NIMBLE language represents a compilable domain-
specific language (DSL) embedded within R. This paper provides an overview of the design
and rationale for NIMBLE along with illustrative examples including importance sampling,
Markov chain Monte Carlo (MCMC) and Monte Carlo expectation maximization (MCEM).

Keywords:domain-specific language; hierarchical models; probabilistic programming; R; MCEM;
MCMC
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ACCEPTED MANUSCRIPT

1 Introduction
Rapid advances in many statistical application domains are facilitated by computational methods

for estimation and inference with customized hierarchical statistical models. These include such

diverse fields as ecology and evolutionary biology, education, psychology, economics, epidemi-

ology, and political science, among others. Although each field has different contexts, they share

the statistical challenges that arise from non-independence among data – from spatial, temporal,

clustered or other sources of shared variation – that are often modeled using unobserved (often un-

observable) random variables in a hierarchical model structure (e.g.,Banerjee et al., 2003; Royle

and Dorazio, 2008; Cressie and Wikle, 2011).

Advancement of analysis methods for such models is a major research area, including improved

performance of Markov chain Monte Carlo (MCMC) algorithms (Brooks et al., 2011), develop-

ment of maximum likelihood methods (e.g.,Jacquier et al., 2007; Lele et al., 2010; de Valpine,

2012), new approximations (e.g.,Rue et al., 2009), methods for model selection and assessment

(e.g.,Hjort et al., 2006; Gelman et al., 2014), combinations of ideas such as sequential Monte Carlo

and MCMC (Andrieu et al., 2010), and many others. However, the current state of software for

hierarchical models leaves a large gap between the limited methods available for easy application

and the newer ideas that emerge constantly in the statistical literature. In this paper we introduce a

new approach to software design for programming and sharing such algorithms for general model

structures, implemented in the NIMBLE package.

The key idea of NIMBLE is to combine flexible model specification with a system for pro-

gramming functions that can adapt to model structures. This contrasts with two common statistical

software designs. In the most common approach, a package provides a fairly narrowly constrained

family of models together with algorithms customized to those models. A fundamentally different

approach has been to provide a language for model specification, thereby allowing a much wider

class of models. Of these, the BUGS language (Gilks et al., 1994) has been most widely used,

with dialects implemented in WinBUGS, OpenBUGS, and JAGS (Lunn et al., 2000, 2012; Plum-

mer, 2003). Other tools with their own modeling language (or similar system) include AD Model

Builder and its newer version, Template Model Builder (Fournier et al., 2012; Kristensen et al.,

2015); Stan(2015); BayesX (Belitz et al., 2013); and PyMC (Patil et al., 2010). All of these pack-
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ages have been successful for providing specific target algorithms, such as Laplace approximation

and specific kinds of MCMC, but none provide a high-level way to write many different kinds of

algorithms that can use the flexibly-defined models. NIMBLE aims to do that via a compilable

domain specific language (DSL;Elliott et al., 2003) embedded within R.

The design of NIMBLE uses several approaches that we think are new for statistical software.

To get started, we needed a general language for model specification, for which we adopted and

extended BUGS because it has been so widely used. NIMBLE processes BUGS code into a model

object that can be used by programs: it can be queried for variable relationships and operated for

simulations or probability calculations. R was a natural fit for implementing this idea because of its

high syntactic compatibility with BUGS and its ability to modify and evaluate parsed code as a first-

class object, owing to its roots in Lisp and Scheme (Ihaka and Gentleman, 1996). Second, to allow

model-generic programming, we needed a way for functions to adapt to different model structures

by separating one-time “setup” steps, such as querying a model’s structure, from repeated “run-

time” steps, such as running a Metropolis-Hastings sampler. This was accomplished by allowing

these steps to be written separately and using the concepts of specialization and staged evaluation

from computer science (Taha and Sheard, 1997; Rompf and Odersky, 2010). Third, we needed a

way to allow high-level programming of algorithms yet achieve efficient computation. This was

done by creating a compiler to translate the model and run-time functions to corresponding C++

code and interfacing to the resulting objects from R.

NIMBLE includes a domain specific language (DSL) embedded within R. “Run-time” code

can be thought of as a subset of R with some special functions for handling models. Programming

in NIMBLE is a lot like programming in R, but the DSL formally represents a distinct language

defined by what is allowed for compilation. NIMBLE stands for Numerical Inference for statistical

Models using Bayesian and Likelihood Estimation.

The rest of this paper is organized as follows. First we give an overview of NIMBLE’s motiva-

tion and design, discussing each major part and how they interact, without specific implementation

details. Then we give examples of three algorithms – importance sampling, MCMC, and Monte

Carlo expectation maximization (MCEM;Wei and Tanner, 1990; Levine and Casella, 2001) – op-

erating on one model to illustrate how the pieces fit together to provide a flexible system. These
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ACCEPTED MANUSCRIPT

examples, and the more complete code available in the online supplement, provide an introduc-

tion to NIMBLE’s implementation. A complete user manual is available at the project web site

(R-nimble.org).

2 Overview of NIMBLE
NIMBLE comprises three main components (Fig. 1): a new implementation of BUGS (with ex-

tensions) as a model declaration language (Fig. 1:A-C); thenimbleFunction system for program-

ming with models (Fig. 1:D-G); and the NIMBLE compiler formodel objects andnimbleFunctions

(Fig. 1:H-J).

2.1 Design rationale

The goal of NIMBLE is to make it easier to implement and apply a variety of algorithms to any

model defined as a directed acyclic graph (DAG). For example, we might want to use (i) several

varieties of MCMC to see which is most efficient (Brooks et al., 2011), including programmatic

exploration of valid MCMC samplers for a particular model; (ii) other Monte Carlo methods such

as sequential Monte Carlo (SMC, a.k.a. “particle filters”;Doucet et al., 2001) or importance sam-

pling; (iii) modular combinations of methods, such as combination of particle filters and MCMC in

state-space time-series models (Andrieu et al., 2010) or combination of Laplace approximation and

MCMC for different levels of the model; (iv) algorithms for maximum likelihood estimation such

as MCEM and data cloning (Lele et al., 2007; Jacquier et al., 2007; de Valpine, 2012); (v) meth-

ods for model criticism, model selection, and estimation of prediction error (Vehtari and Ojanen,

2012) such as Bayesian cross-validation (Gelfand et al., 1992; Stern and Cressie, 2000), calibrated

posterior predictive p-values (Hjort et al., 2006) or alternatives to DIC such as WAIC (Watanabe,

2010; Spiegelhalter et al., 2014); (vi) “likelihood free” or “plug-and-play” methods such as syn-

thetic likelihood (Wood, 2010), approximate Bayesian computation (ABC;Marjoram et al., 2003),

or iterated filtering (Ionides et al., 2006); (vii) parametric bootstrapping of any of the above ideas;

or (viii) the same model and algorithm for multiple data sets. These are just some of many ideas

that could be listed.

There are several reasons the above kinds of methods have been difficult to handle in general

software. First, if one has wanted to write a package providing a new general method, one has had
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to “reinvent the wheel” of model specification. This means deciding on a class of allowed models,

writing a system for specifying the models, and writing the algorithm to use that system. Creating

model specification systems for each package is difficult and tangential to the statistical algorithms

themselves. It also results in multiple different systems for specifying similar classes of models.

For example, lme4 (Bates et al., 2014), MCMCglmm (Hadfield, 2010), R-INLA (Martins et al.,

2013), and others each use a different system for GLMM specification. We desired a system with

the flexibility of BUGS for declaring a wide range of models, while allowing different algorithms

to use the same representation of a given model.

A second limitation of current designs arises from the tension between expressing algorithms

easily in a high-level language and obtaining good computational performance. High-level lan-

guages, especially R, can be slow, but low-level languages like C++ require much greater imple-

mentation effort and customization to different problems. A common solution to this problem has

been to write computationally intensive steps in a low-level language and call them from the high-

level language. This results in code that is less general and less accessible to other developers.

Most of the general MCMC packages represent an extreme case of this phenomenon, with the al-

gorithms hidden in a “black box” unless one digs into the low-level code. We wanted to keep more

programming in a high-level language and use compilation to achieve efficiency.

2.2 Specifying models: Extending the BUGS language

We chose to build upon the BUGS language because it has been widely adopted (Lunn et al.,

2009). Many books use BUGS to teach Bayesian statistical modeling (e.g.,Lancaster, 2004; Kery

and Schaub, 2011; Vidakovic, 2011), and domain scientists find that it helps them to reason clearly

about models (Kery and Schaub, 2011). Many users of the BUGS packages think of BUGS as

nearly synonymous with MCMC, but we distinguish BUGS as a DSL for model specification from

its use in MCMC packages. The differences between BUGS dialects in JAGS, OpenBUGS, and

WinBUGS are not important for this paper.

2.2.1 BUGS, model definitions, and models

When NIMBLE processes BUGS code (Fig. 1:A), it extracts all semantic relationships in model

declarations and builds two primary objects from them. The first is amodel definition object

(Fig. 1:B), which includes a representation of graph nodes (also calledverticesin graph theory)

5
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

as
hi

ng
to

n 
L

ib
ra

ri
es

] 
at

 1
5:

57
 0

8 
Ju

ne
 2

01
6 
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and edges. The second is amodel object (Fig. 1:C), which contains functions for investigating

model structure (Fig. 1:C1), objects to store values of model variables (Fig. 1:C2) and sets of

functions for model calculations and simulations (Fig 1:C3). Onemodel definition can create

multiple models with identical structure. Normally a user interacts only with themodel object,

which may use itsmodel definition object internally (Fig. 1: brown arrow from C1 to B).

At this point, it will be useful to introduce several concepts ofmodel definition objects and

model objects designed to accommodate the flexibility of BUGS. Each BUGS declaration creates

a node, which may be stochastic or deterministic (“logical” in BUGS). For example, nodey[3]

may be declared to follow a normal distribution with meanmu and standard deviationsigma (Fig

1:A). That would makemu andsigma parentsof y[3] andy[3] a dependent(or dependency) of

mu andsigma. NIMBLE usesvariable to refer to a possibly multivariate object whose elements

represent one or more nodes. For example, the variabley includes all nodes declared for one or

more elements ofy (e.g.,y[1], y[2], y[3]). A node can be multivariate, and such nodes can

be occur arbitrarily in contiguous scalar elements of a variable. Groups of nodes in a variable

may be declared by iteration, such that their role in the model follows a pattern, but they may

also be declared separately, so it cannot be assumed in later processing that they do follow a pat-

tern. Themodel definition uses abstractions for variables, nodes, and their graph relationships

that supports handling of interesting cases. For example, a program may need to determine the

dependencies of just one element of a multivariate node, even though that element is not itself a

node.

Processing BUGS code in a high-level language like R facilitates some natural extensions to

BUGS. First, NIMBLE makes BUGS extensible by allowing new functions and distributions to be

provided asnimbleFunctions. Second, NIMBLE can transform a declared graph into different,

equivalent graphs that may be needed for different implementation contexts. For example, NIM-

BLE implements alternative parameterizations for distributions by automatically inserting nodes

into the graph to transform from one parameterization to another. If the function that ultimately

executes gamma probability density calculations needs therate parameter but the BUGS code de-

clares a node to follow a gamma distribution using thescale parameter (related by rate= 1/scale),

a new node is inserted to calculate1/scale, which is then used as the needed gammarate. If
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ACCEPTED MANUSCRIPT

any other declaration invokes the same reparameterization, it will use the same new node. An-

other important, optional, graph transformation occurs when the parameter of a distribution is an

expression. In that case a separate node can be created for the expression’s value and inserted for

use where needed. This is useful when an algorithm needs access to the value of a parameter for a

particular node, such as for conjugate distribution relationships used in Gibbs sampling and other

contexts. A third extension is that BUGS code can be used to define a set of alternative models

by including conditional statements (i.e.,if-then-else) that NIMBLE evaluates (in R) when

themodel definition is created. This avoids the need to copy and modify entire BUGS model

definitions for each alternative model, the standard practice when using previous BUGS packages.

NIMBLE uses a more general concept ofdata than previous BUGS packages. In previous

packages, a model cannot be defined without its data. In NIMBLE,data is a label for the role

played by certain nodes in a model. For example, nodes labeled as data are excluded from calls

to simulate new values into the model by default, to avoid over-writing observed values, but this

default can be over-ridden by a programmer who wishes to simulate fake data sets from the model.

The data label is distinct from the actualvaluesof nodes labeled as data, which can be program-

matically changed. For example, one might want to iterate over multiple data sets, inserting each

one into the data nodes of a model and running an algorithm of interest for each.

At the time of this writing, some BUGS features are not implemented. Most notably, NIMBLE

does not yet allow stochastic indexing, i.e., indices that are not constants.

2.2.2 Howmodel objects are used

A model object is used in two ways from R and/or nimbleFunctions. First, one may need to

query node relationships, a common step in setup code (Fig 1: brown arrow from E to C1). For

example, consider animbleFunction for a Metropolis-Hastings MCMC sampler (shown in detail

later). In one instance, it may be needed to sample a node calledmu[2], in another to sample a

node calledx[3, 5], and so on. We refer to the node to be sampled as thetarget node. The setup

stage of thenimbleFunction can query themodel object to determine what stochastic nodes

depend on the target node and save that information for repeated use by run-time code. Or it may

be that an R function needs to query amodel object, for example to determine if it conforms

to the requirements for a particular algorithm. The implementation of themodel uses itsmodel
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ACCEPTED MANUSCRIPT

definition to respond to such queries, but thenimbleFunction programmer is protected from

that detail.

Other examples of model queries include determining:

• Topologically sorted order of nodes, which means an order valid for sequential calculations

or simulations.

• All nodes or variables in the model of a particular type, such as stochastic, deterministic,

and/or data nodes.

• The position of nodes in the model: e.g.,top nodes have no stochastic parents;endnodes

have no stochastic dependents; andlatentnodes have stochastic parents and dependents.

• The nodes contained in an arbitrary subset of variable elements. For example,x[3:5] may

represent the three scalar nodesx[3], x[4], andx[5], or it may represent one scalar node

x[3] and one multivariate nodex[4:5], or other such combinations.

• Nodes or expressions with certain semantic relationships, such as the node or expression for

therate parameter of a gamma distribution.

• A variety of kinds of dependencies from a set of nodes. For example, stochastic dependen-

cies (also called “Markov blankets”) include all paths through the graph terminating at, and

including, stochastic nodes. These are needed for many algorithms. In other cases, stochas-

tic dependencies without data nodes are needed, such as for one time-step of a particle filter.

Deterministic dependencies are like stochastic dependencies but omit the stochastic nodes

themselves. This kind of dependency is useful following the assignment of a value to a node

to ensure descendent stochastic nodes use updated parameter values.

The second waymodel objects are used is to manage node values and calculations, both of

which are commonly needed in run-time functions (Fig 1:F2). Amodel object contains each

model variable and any associated log probabilities (Fig 1:C2). It also can access functions for

calculating log probabilities and generating simulations for each node (Fig 1:C3). These functions

are constructed asnimbleFunctions from each line of BUGS code. Specifically, each node has a

nimbleFunction with four run-time functions:
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ACCEPTED MANUSCRIPT

• calculate: For a stochastic node, this calculates the log probability mass or density func-

tion, stores the result in an element of the corresponding log probability variable (Fig. 1:

C2), and returns it. For a deterministic node,calculate executes its computation, stores

the result as the value of the node, and returns 0.

• calculateDiff: This is like calculate except that for a stochastic node it returns the

difference between the new log probability value and the previously stored value. This is

useful for iterative algorithms such as Metropolis-Hastings-based MCMC.

• simulate: For a stochastic node, this generates a draw from the distribution and stores it as

the value of the node.simulate has no return value. For a deterministic node,simulate is

identical tocalculate except that it has no return value.

• getLogProb: For a stochastic node, this returns the currently stored log probability value

corresponding to the node. For a deterministic node, this returns 0.

A model object has functions of the same names to call each of these node functions for an ordered

sequence of nodes. With the exception ofsimulate, these return the sum of the values returned

by the corresponding node functions (e.g., the sum of log probabilities forcalculate). A typical

idiom for model-generic programming is to determine a vector of nodes by inspecting the model

in setup code and then use it for the above operations in run-time code.

2.2.3 modelValues objects for storing multiple sets of model values

A common need for hierarchical model algorithms is to store multiple sets of values for multiple

model variables, possibly including their associated log probability variables. NIMBLE provides

a modelValues data structure for this purpose. When amodel definition is created, it builds

a specification for the relatedmodelValues class. When amodel object is created, it includes

an object of themodelValues class as a default location for model values. NewmodelValues

classes and objects can be created with whatever variables and types are needed. Examples of

uses ofmodelValues objects are: storing the output of MCMC; storing a set of simulated node

values for input to importance sampling; and storing a set of “particle” values and associated log

probabilities for a particle filter.
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2.3 Programming with models

One can use model objects arbitrarily in R, but NIMBLE’s system for model-generic program-

ming is based onnimbleFunctions (Fig 1:D). Separate function definitions for the two eval-

uation stages – onesetup function and one or more run-time functions – are written within the

nimbleFunction (Fig 1:D1,D2). The purpose of asetup function is tospecializeanimbleFunction

to a particularmodel object, nodes, or whatever other arguments are taken by thesetup function.

This typically involves one-time creation of objects that can be used repeatedly in run-time code.

Such objects could be results from querying the model about node relationships, specializations

of othernimbleFunctions, newmodelValues objects, or results from arbitrary R code. When

animbleFunction is called, the arguments are passed to thesetup function, which is evaluated

in R (Fig 1:E). ThenimbleFunction saves the evaluation environment and creates the return ob-

ject. The return object is an instance of a custom-generated class whose member functions are the

run-time function(s) (Fig 1:F).

The two-stage evaluation ofnimbleFunctions is similar to a function object (functor) system:

thenimbleFunction is like an implicit class definition, and calling it is like instantiating an object

of the class with initialization steps done by thesetup function. However thenimbleFunction

takes care of steps such as determining which objects created duringsetup evaluation need to be-

come member data in a corresponding class definition and determining their types from specialized

instances of thenimbleFunction. As a result, the programmer can focus on higher level logic.

The run-time functions include a default-namedrun function and arbitrary others. These are

written in the NIMBLE DSL, which allows them to be evaluated natively in R (Fig 1:G) or com-

piled into C++ class methods (Fig 1:H). The former allows easier debugging of algorithm logic,

while the latter allows much faster execution. It is also possible to omit thesetup function and

provide a singlerun function, which yields a simple function in the NIMBLE DSL that can be

compiled to C++ but has no first-stage evaluation and hence no specialization. For bothmodels

andnimbleFunctions, the R objects that use compiled or uncompiled versions provide a largely

identical interface to the R user.

The NIMBLE DSL supports control ofmodel andmodelValues objects, common math op-

erations, and basic flow control. Control ofmodel objects includes accessing values of nodes and
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variables as well as callingcalculate, calculateDiff, simulate, andgetLogProb for vectors

of nodes. With these basic tools, a run-time function canoperatea model: get or set values, simu-

late values, and control log probability calculations. Use ofmodelValues objects includes setting

and accessing specific values and copying arbitrary groups of values betweenmodel and/or other

modelValues objects using the specialcopy operation. Together these uses ofmodelValues fa-

cilitate iteration over sets of values for use in amodel object. For example, amodelValues object

might contain the “particle” sample of a particle filter, and the run function could iterate over them,

using each one in the model for some simulation or calculation. Supported math operations include

basic (vectorized) math, linear algebra, and probability distribution calculations.

The two-stage evaluation system works naturally when onenimbleFunction needs to use

othernimbleFunctions. OnenimbleFunction can specialize anothernimbleFunction in its

setup code, or take it as asetup argument, and then use it in run-time code. In addition one can

create vectors ofnimbleFunctions. There is a simplenimbleFunction class inheritance system

that allows labeling of differentnimbleFunctions that have the same run-time function proto-

type(s). For example, animbleFunction for MCMC contains a vector ofnimbleFunctions,

each of which updates (samples) some subset of the model. The latternimbleFunctions inherit

from the same base class. This is a light burden for the NIMBLE programmer and allows the

NIMBLE compiler to easily generate a simple C++ class hierarchy. One can also create numeric

objects, lists of same-type numeric objects, and customizedmodelValues objects insetup code

for use in run-time code.

The nimbleFunction system is designed to look and feel like R in many ways, but there

are important differences. Thesetup function does not have a programmer-defined return value

because thenimbleFunction system takes charge by returning a specializednimbleFunction

(ready for run-time function execution) after calling itssetup function. More importantly, the

run-time function(s) have some highly non-R-like behavior. For efficient C++ performance, they

pass arguments by reference, opposite to R’s call-by-value semantics. To support the static typing

of C++, once an object name is used it cannot subsequently be assigned to a different-type object.

And type declarations of arguments and the return value are required in order to simplify compiler

implementation. To a large extent, other types are inferred from the code.

11
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

as
hi

ng
to

n 
L

ib
ra

ri
es

] 
at

 1
5:

57
 0

8 
Ju

ne
 2

01
6 



ACCEPTED MANUSCRIPT

2.4 The NIMBLE compiler

A thorough description of the NIMBLE compiler is beyond the scope of this paper, but we provide

a brief overview of hownimbleFunctions andmodels are mapped to C++ and how NIMBLE

manages the use of the compiled C++. The NIMBLE compiler generates a C++ class definition for

animbleFunction. Results ofsetup code that are used in run-time code are turned into member

data. The default-namedrun member function and other explicitly defined run-time functions are

turned into C++ member functions. Once the C++ code is generated, NIMBLE calls the C++

compiler and loads the resulting shared object into R. Finally, NIMBLE dynamically generates an

R reference class definition to provide an interface (using active bindings) to all member data and

functions of objects instantiated from compiled C++ (Fig 1:J). This creates an object with identical

interface (member functions) as its uncompiled counterpart for the R user. When there are multiple

instances (specializations) of the samenimbleFunction, they are built as multiple objects of the

same C++ class. If animbleFunction is defined with nosetup code, then there is no first-stage

evaluation, and the corresponding C++ is a function rather than a class.

Compilation ofmodels involves two components. Each line of BUGS code is represented as a

custom-generatednimbleFunction with calculate, calculateDiff, simulate, andgetLogProb

run-time functions. These are compiled like any othernimbleFunction, the only difference be-

ing inheritance from a common base class. This facilitates NIMBLE’s introduction of extensibility

for BUGS by allowing new functions and distributions to be provided asnimbleFunctions. The

variables of amodel andmodelValues are implemented by generating simple C++ classes with

appropriate member objects. LikenimbleFunctions, bothmodels andmodelValues objects are

automatically interfaced via R objects that have similar interfaces to their uncompiled counterparts

(Fig 1:I).

For the most part, the compiler infers types and dimensionality of numeric variables and gen-

erates code for run-time size-checking and resizing. The exceptions include required declaration

of run-time argument types and the return type as well as situations where size inference is not

easy to implement. NIMBLE includes a library of functions and classes used in generated C++.

Vectorized math and linear algebra are implemented by generating code for the Eigen C++ library

(Guennebaud, Jacob, et al., 2010). Basicfor-loops for numeric iterators and basic flow control
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usingif-then-else anddo-while constructs are supported. The actual compilation processing

converts run-time code into an abstract syntax tree (AST) with an associated symbol table, which

are annotated and transformed into a C++ syntax tree. A set of R classes for representing C++

code was developed for this purpose.

Compilation ofnimbleFunctions harnesses completed first-stage evaluation (specialization)

in several ways. First, contents of objects created duringsetup evaluation can be directly inspected

to determine types. Second, the compiler usespartial evaluationto simplify the C++ code and

types needed. For example, the compiler resolves nodes inmodel objects at compile time so that

the C++ code can find the right object by simple pointer dereferencing. It also converts vectors

of nodes into different kinds of objects depending on how they are used in run-time code. Such

partial evaluation is done in thesetup environment, essentially as a compiler-generated extension

to thesetup code.

3 Examples
In this section we present some examples of model-generic programming and the algorithm com-

position it supports. This section includes more implementation details, including some code for

discussion. Specifically, we show how importance sampling and Metropolis-Hastings sampling are

implemented asnimbleFunctions. Then we show how an MCMC is composed of multiple sam-

plers that can be modified programmatically from R. Finally we show an example of composing

an algorithm that uses MCMC as one component, for which we choose MCEM. Complete code to

replicate the examples is provided in the supplement.

As a model for illustration of these algorithms, we choose the pump model from the Win-

BUGS/OpenBUGS suite of examples (Lunn et al., 2012) because it is simple to explain and use.

We assume some familiarity with BUGS. The BUGS code is:

pumpCode <- nimbleCode({

for (i in 1:N){

theta[i] ˜ dgamma(shape = alpha, rate = beta) ## random effects

lambda[i] <- theta[i]*t[i] ## t[i] is explanatory data

x[i] ˜ dpois(lambda[i]) ## x[i] is response data
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}

alpha ˜ dexp(1.0) ## priors for alpha and beta

beta ˜ dgamma(0.1, 1.0)

})

Herex andt are to be provided as data (not shown),theta are random effects, andalpha and

beta are the parameters of interest. We have written the gamma distribution fortheta[i] us-

ing named parameters to illustrate this extension of BUGS. Creation of a model object called

pumpModel from thepumpCode is shown in the supplement.

3.1 Importance sampling

Importance sampling is a method for approximating an expected value from a Monte Carlo sam-

ple (Givens and Hoeting, 2012). It illustrates the glaring gap between algorithms and software:

although it is an old and simple idea, it is not easily available for general model structures. It

involves sampling from one distribution and weighting each value so the weighted sample repre-

sents the distribution involved in the expected value. It can be used to approximate a normalizing

constant such as a likelihood or Bayes factor. (It can also be combined with a resampling step to

sample from a Bayesian posterior, i.e., Sampling/Importance Resampling.)

For the pump model, suppose we want to use importance sampling to approximate the marginal

likelihood of x[1:3], which requires integrating over the first three random effects,theta[1:3],

given values ofalpha andbeta. This is an arbitrary subset of the model for illustration. To

do so one simulates a sampletheta[1:3]k ∼ PIS(theta[1:3]), k = 1 . . .m, wherePIS is a

known distribution. For mathematical notation, we are mixing the code’s variable names with

subscripts, so thattheta[1:3]k is thekth simulated value oftheta[1:3]. Then the likelihood is

approximated as

P(x[1:3]) ≈
1
m

m∑

k=1

P(x[1:3]|theta[1:3]k)
P(theta[1:3]k)

PIS(theta[1:3]k)
(1)

whereP(∙) indicates the part of the model’s probability density or mass labeled by its argument.

The ratio on the right is the importance weight for thekth value of theta[1:3]. To keep the

example concise, we assume the programmer already has a function (in R or NIMBLE) to sample
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from PIS and calculate the denominator of the weights. Our example shows the use of NIMBLE to

calculate (1) from those inputs.

Model-generic NIMBLE code for calculation of (1) is as follows:

importanceSample <- nimbleFunction(

setup = function(model, sampleNodes, mvSample) {

calculationNodes <- model$getDependencies(sampleNodes)

},

run = function(simulatedLogProbs = double(1)) {

ans <- 0.0 # (1)

for(k in 1:getsize(mvSample)) { # (2)

copy(from = mvSample, to = model, # (3)

nodes = sampleNodes, row = k)

logProbModel <- model$calculate(calculationNodes) # (4)

if(!is.nan(logProbModel)) # (5)

ans <- ans + exp(logProbModel - simulatedLogProbs[k])

}

return(ans/getsize(mvSample)) # (6)

returnType(double(0)) # (7)

}

)

The specialization step for our example would bepumpIS <- importanceSample(model =

pumpModel, sampleNodes = "theta[1:3]", mvSample = ISsample). Note that the argu-

ments toimportanceSample are defined in itssetup function.model is given as thepumpModel

object created above.sampleNodes – the set of nodes over which we want to integrate by im-

portance sampling – is provided as a character vector using R’s standard variable subset notation.

TheISsample object passed as themvSample argument is amodelValues object for providing

the values sampled fromPIS. It does not need to be populated with sample values until therun

function is called. Rather, at thesetup stage, it just bindsmvSample to (a reference to)ISsample

for use in therun code.
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The only processing done in thesetup code is to query the model for the vector of or-

dered stochastic dependencies of thesampleNodes. These are needed in therun code to cal-

culate the necessary part of the model in topologically sorted order. The model is queried using

getDependencies, and the result saved incalculationNodes. In this case,calculationNodes

will turn out to be (theta[1], theta[2], theta[3], lambda[1], lambda[2], lambda[3],

x[1], x[2], x[3]). This means thatmodel$calculate(calculationNodes) will return

log(P(x[1:3]|theta[1:3]k)P(theta[1:3]k)).

The run code illustrates several features of the NIMBLE DSL. It shows type declaration of

thesimulatedLogProbs argument as a vector of doubles (double-precision numbers) and (7) the

return type as a scalar double.simulatedLogProbs represents the vector ofPIS(theta[1:3]k)

values. In another implementation of importance sampling, this could be included in themvSample

object, but we use it here to illustrate a run-time argument. The body of therun function (1)

initializes the answer to zero; (2) iterates over the samples inmvSample; (3) copies values of the

sampleNodes from mvSample into the model; (4)calculates the sum of log probabilities of

calculationNodes; and (5) uses basicif-then logic and math to accumulate the results.

The most important insight aboutimportanceSample is that it is model-generic: nothing in

thesetup code orrun code is specific to the pump model or nodestheta[1:3].

3.2 Metropolis-Hastings samplers

Next we illustrate a Metropolis-Hastings sampler with a normally-distributed random-walk pro-

posal distribution. The model-generic code for this is:

simple_MH <- nimbleFunction(

setup = function(model, currentState, targetNode) {

calculationNodes <- model$getDependencies(targetNode)

},

run = function(scale = double(0)) {

logProb_current <- model$getLogProb(calculationNodes) # (1)

proposalValue <- rnorm(1, mean = model[[targetNode]], sd = scale) # (2)

model[[targetNode]] <<- proposalValue # (3)

logProb_proposal <- model$calculate(calculationNodes) # (4)
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log_Metropolis_Hastings_ratio <- logProb_proposal - logProb_current # (5)

accept <- decide(log_Metropolis_Hastings_ratio) # (6)

if(accept)

copy(from = model, to = currentState, row = 1, # (7a)

nodes = calculationNodes, logProb = TRUE)

else

copy(from = currentState, to = model, row = 1, # (7b)

nodes = calculationNodes, logProb = TRUE)

return(accept)

returnType(integer(0))

})

Suppose we want a sampler fortheta[4] in the pump model. An example specialization step

would betheta4sampler <- simple MH(model = pumpModel, currentState = mvState,

targetNode = "theta[4]"). HeremvState is amodelValues object with variables that match

those in the model, with only one of each. This is used to store the current state of themodel. We

assume that on entry to therun function,mvState will contain a copy of all model variables and

log probabilities, and on exit therun function must ensure that the same is true, reflecting any up-

dates to those states. As in the importance sampling example, the only real work to be done in the

setup function is to query the model to determine the stochastic dependencies of thetargetNode.

In this casecalculationNodes will be (theta[4], lambda[4], x[4]).

The run function illustrates the compactness of expressing a Metropolis-Hastings algorithm

using language elements likecalculate, getLogProb, copy, and list-like access to a model node.

Thescale run-time argument is the standard deviation for the normally distributed proposal value.

In the full, released version of this algorithm (sampler RW), thesetup code includes some error

trapping, and there is additional code to implement adaptation of thescale parameter (Haario

et al., 2001) rather than taking it as a run-time argument. The simplified version here is less

cluttered for illustration. In addition the full version is more efficient by usingcalculateDiff

instead of bothgetLogProb andcalculate, but here we use the latter to illustrate the steps more

clearly.
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The lines ofrun (1) obtain the current sum of log probabilities of the stochastic depen-

dents of the target node (including itself); (2) simulate a new value centered on the current value

(model[[targetNode]]); (3) put that value in the model; (4) calculate the new sum of log proba-

bilities of the same stochastic dependents; (5) determine the log acceptance probability; (6) call the

utility function decide that determines the accept/reject decision; and (7) copy from themodel to

thecurrentState for (7a) an acceptance or (7b) vice-versa for a rejection. Again, thesetup and

run functions are fully model-generic.

This example illustrates natural R-like access to nodes and variables in models, such as

model[[targetNode]], but making this model-generic leads to some surprising syntax. Every

node has a unique character name that includes indices, such as"theta[4]". This leads to the

syntaxmodel[["theta[4]"]], rather thanmodel[["theta"]][4]. The latter is also valid, but

it is not model-generic because, in another specialization ofsimple MH, targetNode may have a

different number of indices. For example, iftargetNode is "y[2, 3]", model[[targetNode]]

accesses the same value asmodel[["y"]][2,3]. The NIMBLE DSL also provides vectorized

access to groups of nodes and/or variables.

3.3 MCMC

To illustrate a full set of MCMC samplers for a model, we do not providenimbleFunction code

as above but rather illustrate the flexibility provided by managing sampler choices from R. The first

step in creating an MCMC is to inspect the model structure to decide what kind of sampler should

be used for each node or block of nodes. An R function (configureMCMC) does this and returns an

object with sampler assignments, which can be modified before creating thenimbleFunctions to

execute the MCMC. Since this is all written in R, one can control its behavior, modify the code,

or write a completely new MCMC system. Once the user is happy with the MCMC configuration,

the corresponding suite of specializednimbleFunctions can be built, compiled, and executed.

In the case of the pump model (see supplement), we choose for illustration to start with normal

adaptive random walk samplers rather than Gibbs samplers. It is apparent from Figure 2 (left

panel) that the posterior is correlated betweenalpha andbeta. One might then customize the

sampler choices using this knowledge. For example, one can insert a bivariate (block) adaptive

random walk sampler and then re-compile the MCMC. This results in improved mixing, reflected

18
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

as
hi

ng
to

n 
L

ib
ra

ri
es

] 
at

 1
5:

57
 0

8 
Ju

ne
 2

01
6 



ACCEPTED MANUSCRIPT

as lower autocorrelations of the chain (Fig. 2, middle panel) and higher effective sample size per

second of computation (Fig. 2, right panel).

3.4 Monte Carlo Expectation Maximization

MCEM is a widely known algorithm for maximum likelihood estimation for hierarchical models. It

is used instead of the EM algorithm when the “expectation” step cannot be determined analytically.

To our knowledge, there has been no previous implementation of MCEM that can automatically be

applied to the range of model structures provided by BUGS. MCEM works by iterating over two

steps: (1) MCMC sampling of the latent states given fixed parameters (top-level nodes); and (2)

optimization with respect to (non-latent) parameters of the average log probability of the MCMC

sample. NIMBLE provides abuildMCEM function in which step (1) is implemented by creating an

MCMC configuration with samplers only for latent states, and step (2) is implemented by calling

one of R’s optimizers with a compilednimbleFunction as the objective function. The top level

of control of the algorithm is an R function that alternates between these steps. For the pump

model, the MCEM quickly settled within 0.01 of the published values of 0.82 and 1.26 foralpha

andbeta (George et al., 1993), which we consider to be within Monte Carlo error.

4 Discussion
We have introduced a system for combining a flexible model specification language with a high-

level algorithm language for model-generic programming, all embedded within R. Numerous other

algorithms can be envisioned for implementation with this system, such as those listed in section

(2.1) above.

However, several important challenges remain for building out the potential of NIMBLE. First,

not all features of BUGS, or of graphical models in general, have so far been incorporated. A

particular challenge is efficient handling of stochastically indexed dependencies, such as when

discrete mixture components are latent states. This represents a dynamic graph structure and so

will require a more flexible system for representing dependencies. Second, several packages have

made great use of automatic differentiation, notably ADMB/TMB and Stan. Because the NIMBLE

compiler generates C++ code, it would be possible to extend it to generate code that uses an

automatic differentiation library. Third, there is a need to include more compilable functionality in
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the NIMBLE DSL, such as use of R’s optimization library from generated C++. An algorithm like

Laplace approximation would be most natural if optimization and derivatives are available in the

DSL. Finally, there is potential to extend the NIMBLE compiler in its own right as a useful tool

for programming efficient computations from R even when there is no BUGS code involved.

The choice to embed a compilable domain-specific language within R revealed some benefits

and limitations. R’s handling of code as an object facilitates processing of BUGS models and

nimbleFunction code. It also allows the dynamic construction and evaluation of class-definition

code for eachmodel andnimbleFunction and their C++ interfaces. And it provides many other

benefits, perhaps most importantly that it allows NIMBLE to work within such a popular statistical

programming environment. On the negative side, NIMBLE needs some fundamentally different

behavior than R, such as call-by-reference and functions that work by “side effects” (e.g., modify-

ing an object without copying it). Such inconsistencies make NIMBLE something of a conceptual

hybrid, which could be viewed as practical and effective by some or as inelegant or confusing by

others. And for large models, NIMBLE’s compilation processing suffers from R’s slow execution.

We built upon BUGS as a model specification language because it has become so widely used,

but it has limitations. First, BUGS uses distribution notation slightly different from R, so com-

bining BUGS and R syntaxes in the same system could be confusing. In particular some BUGS

distributions use different default parameterizations than R’s distributions of the same or similar

name. Second, BUGS does not support modular model programming, such as compactly declaring

common model substructures in a way that re-uses existing code. It also does not support vector-

ized declarations of scalar nodes that follow the same pattern (it requiresfor-loops instead). These

are extensions that could be built into NIMBLE in the future. Other extensions, such as declaration

of single multivariate nodes for vectorized calculations, were implemented almost automatically as

a result of NIMBLE’s design. Third, one could envision powerful uses of programmatically gener-

ating model definitions rather than writing them in static code. This could be done via NIMBLE’s

model definition system in the future.

Other quite distinct lines of research on software for graphical models come from “probabilistic

programming” efforts by computer scientists, such as Church (Goodman et al., 2008) and BLOG

(Milch et al., 2006). Their motivations are somewhat different, and their programming style and
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concepts would be new to many applied statisticians. It will be interesting to see where these two

distinct motivations for similar programming language problems lead in the future.

SUPPLEMENTARY MATERIAL

R code for examples:R code to run examples with NIMBLE package installed. (R code file)
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Figure 1: Overview of NIMBLE. Left side: A model starts as BUGS code (A), which is turned
into amodel definition object (B), which creates an uncompiledmodel object (C). Right side:
A nimbleFunction starts as model-generic code (D). It is specialized to a model and/other argu-
ments by executing itssetup function (E), which may inspect themodel structure (brown arrow,
using C1). This returns an uncompiled, specializednimbleFunction object (F). Its run-time
function(s) can be executed in R, using the uncompiled model (brown arrows), to debug algorithm
logic (G). Parts of themodel andnimbleFunction (red boxes) can be compiled (H), creating
objects (I, J) that can be used from R similarly to their uncompiled counterparts. Gray= code.
Blue= R execution. Green, purple & tan= Uncompiled objects that run in pure R. Green arrows
= pre-compilation workflow. Red boxes & arrows= compilation workflow.
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Figure 2: Example of how high-level programmability and compilation allow flexible composi-
tion of efficient algorithms. This uses the “pump” model from the classic BUGS examples. Left
panel: Parametersα andβ show posterior correlation. Middle panel: MCMC mixing is summa-
rized using the estimated autocorrelation function. When a bivariate (block) adaptive random walk
sampler is added to the suite of univariate adaptive random walk samplers, the chain autocorrela-
tion decreases, reflecting better mixing. Right panel: Computational performance measured as the
effective sample size per second of computation time is greater with the block sampler included.
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