Taylor & Francis
Taylor & Francis Group

Journal of Computational and Graphical Statistics

ISSN: 1061-8600 (Print) 1537-2715 (Online) Journal homepage: http://amstat.tandfonline.com/loi/ucgs20

Programming with models: writing statistical
algorithms for general model structures with
NIMBLE

Perry de Valpine, Daniel Turek, Christopher J. Paciorek, Clifford Anderson-
Bergman, Duncan Temple Lang & Rastislav Bodik

To cite this article: Perry de Valpine, Daniel Turek, Christopher J. Paciorek, Clifford Anderson-
Bergman, Duncan Temple Lang & Rastislav Bodik (2016): Programming with models: writing
statistical algorithms for general model structures with NIMBLE, Journal of Computational and
Graphical Statistics, DOI: 10.1080/10618600.2016.1172487

To link to this article: http://dx.doi.org/10.1080/10618600.2016.1172487

[N
h View supplementary material &'

% Accepted author version posted online: 06
Apr 2016.
Published online: 06 Apr 2016.

\J
G/ Submit your article to this journal &

||I| Article views: 85

@ View Crossmark data (&'

CrossMark

Full Terms & Conditions of access and use can be found at
http://amstat.tandfonline.com/action/journalinformation?journalCode=ucgs20

(Download by: [University of Washington Libraries] Date: 08 June 2016, At: 15:57)

http://amstat.tandfonline.com/action/journalInformation?journalCode=ucgs20
http://amstat.tandfonline.com/loi/ucgs20
http://amstat.tandfonline.com/action/showCitFormats?doi=10.1080/10618600.2016.1172487
http://dx.doi.org/10.1080/10618600.2016.1172487
http://amstat.tandfonline.com/doi/suppl/10.1080/10618600.2016.1172487
http://amstat.tandfonline.com/doi/suppl/10.1080/10618600.2016.1172487
http://amstat.tandfonline.com/action/authorSubmission?journalCode=ucgs20&page=instructions
http://amstat.tandfonline.com/action/authorSubmission?journalCode=ucgs20&page=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2016.1172487&domain=pdf&date_stamp=2016-04-06
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2016.1172487&domain=pdf&date_stamp=2016-04-06

Downloaded by [University of Washington Libraries] at 15:57 08 June 2016

ACCEPTED MANUSCRIPT

Programming with models: writing statistical
algorithms for general model structures with NIMBLE

Perry de Valping Daniel Turek?, Christopher J. PaciorékClifford
Anderson-Bergmal?, Duncan Temple Larfgand Rastislav Bodik

1University of California, Berkeley, Department of Environmental Science, Policy and Management
2University of California, Berkeley, Department of Statistics
3University of California, Davis, Department of Statistics
4University of California, Berkeley, Department of Electrical Engineering and Computer Science

Abstract

We describe NIMBLE, a system for programming statistical algorithms for general model
structures within R. NIMBLE is designed to meet three challenges: flexible model specifi-
cation, a language for programming algorithms that can u$erednt models, and a balance
between high-level programmability and executidiiceency. For model specification, NIM-

BLE extends the BUGS language and creates model objects, which can manipulate variables,
calculate log probability values, generate simulations, and query the relationships among vari-
ables. For algorithm programming, NIMBLE provides functions that operate with model ob-
jects using two stages of evaluation. The first stage allows specialization of a function to a
particular model andr nodes, such as creating a Metropolis-Hastings sampler for a particular
block of nodes. The second stage allows repeated execution of computations using the results
of the first stage. To achievdheient second-stage computation, NIMBLE compiles models
and functions via €+, using the Eigen library for linear algebra, and provides the user with

an interface to compiled objects. The NIMBLE language represents a compilable domain-
specific language (DSL) embedded within R. This paper provides an overview of the design
and rationale for NIMBLE along with illustrative examples including importance sampling,
Markov chain Monte Carlo (MCMC) and Monte Carlo expectation maximization (MCEM).

Keywords:domain-specific language; hierarchical models; probabilistic programming; R; MCEM,;
MCMC

ACCEPTED MANUSCRIPT
1

Downloaded by [University of Washington Libraries] at 15:57 08 June 2016

ACCEPTED MANUSCRIPT

1 Introduction

Rapid advances in many statistical application domains are facilitated by computational methods
for estimation and inference with customized hierarchical statistical models. These include such
diverse fields as ecology and evolutionary biology, education, psychology, economics, epidemi-
ology, and political science, among others. Although each field Heexeint contexts, they share

the statistical challenges that arise from non-independence among data — from spatial, temporal,
clustered or other sources of shared variation — that are often modeled using unobserved (often un-
observable) random variables in a hierarchical model structure Bagerjee et al.2003 Royle

and Dorazi9p2008 Cressie and Wiklg2011).

Advancement of analysis methods for such models is a major research area, including improved
performance of Markov chain Monte Carlo (MCMC) algorithnBsdoks et al, 2011), develop-
ment of maximum likelihood methods (e.gacquier et al.2007 Lele et al, 201Q de Valpine
2012, new approximations (e.gRue et al. 2009, methods for model selection and assessment
(e.g.,Hjort et al, 2006 Gelman et a].2014), combinations of ideas such as sequential Monte Carlo
and MCMC Andrieu et al, 2010, and many others. However, the current state of software for
hierarchical models leaves a large gap between the limited methods available for easy application
and the newer ideas that emerge constantly in the statistical literature. In this paper we introduce a
new approach to software design for programming and sharing such algorithms for general model
structures, implemented in the NIMBLE package.

The key idea of NIMBLE is to combine flexible model specification with a system for pro-
gramming functions that can adapt to model structures. This contrasts with two common statistical
software designs. In the most common approach, a package provides a fairly narrowly constrained
family of models together with algorithms customized to those models. A fundamentéiyedit
approach has been to provide a language for model specification, thereby allowing a much wider
class of models. Of these, the BUGS langua@ék§ et al, 1994 has been most widely used,
with dialects implemented in WinBUGS, OpenBUGS, and JAG&(et al, 200Q 2012 Plum-
mer, 2003. Other tools with their own modeling language (or similar system) include AD Model
Builder and its newer version, Template Model BuildEogrnier et al.2012 Kristensen et aJ.

2019; Stan(2019; BayesX Belitz et al, 2013; and PyMC Patil et al, 2010. All of these pack-

ACCEPTED MANUSCRIPT
2

Downloaded by [University of Washington Libraries] at 15:57 08 June 2016

ACCEPTED MANUSCRIPT

ages have been successful for providing specific target algorithms, such as Laplace approximation
and specific kinds of MCMC, but none provide a high-level way to write maffem@int kinds of
algorithms that can use the flexibly-defined models. NIMBLE aims to do that via a compilable
domain specific language (DSE]liott et al., 2003 embedded within R.

The design of NIMBLE uses several approaches that we think are new for statistical software.
To get started, we needed a general language for model specification, for which we adopted and
extended BUGS because it has been so widely used. NIMBLE processes BUGS code into a model
object that can be used by programs: it can be queried for variable relationships and operated for
simulations or probability calculations. R was a natural fit for implementing this idea because of its
high syntactic compatibility with BUGS and its ability to modify and evaluate parsed code as a first-
class object, owing to its roots in Lisp and Schetiaka and Gentlemai996. Second, to allow
model-generic programming, we needed a way for functions to adaptéoetit model structures
by separating one-time “setup” steps, such as querying a model’s structure, from repeated “run-
time” steps, such as running a Metropolis-Hastings sampler. This was accomplished by allowing
these steps to be written separately and using the concepts of specialization and staged evaluation
from computer sciencel@ha and Sheayd 997 Rompf and Odersky2010. Third, we needed a
way to allow high-level programming of algorithms yet achiefiéceent computation. This was
done by creating a compiler to translate the model and run-time functions to correspording C
code and interfacing to the resulting objects from R.

NIMBLE includes a domain specific language (DSL) embedded within R. “Run-time” code
can be thought of as a subset of R with some special functions for handling models. Programming
in NIMBLE is a lot like programming in R, but the DSL formally represents a distinct language
defined by what is allowed for compilation. NIMBLE stands for Numerical Inference for statistical
Models using Bayesian and Likelihood Estimation.

The rest of this paper is organized as follows. First we give an overview of NIMBLE’s motiva-
tion and design, discussing each major part and how they interact, without specific implementation
details. Then we give examples of three algorithms — importance sampling, MCMC, and Monte
Carlo expectation maximization (MCEMYei and Tannerl99Q Levine and Casell&2001) — op-

erating on one model to illustrate how the pieces fit together to provide a flexible system. These

ACCEPTED MANUSCRIPT
3

Downloaded by [University of Washington Libraries] at 15:57 08 June 2016

ACCEPTED MANUSCRIPT

examples, and the more complete code available in the online supplement, provide an introduc-
tion to NIMBLE'’s implementation. A complete user manual is available at the project web site

(R-nimble.org).

2 Overview of NIMBLE

NIMBLE comprises three main components (Fig. 1): a new implementation of BUGS (with ex-
tensions) as a model declaration language (Fig. 1:A-ChihbleFunction system for program-
ming with models (Fig. 1:D-G); and the NIMBLE compiler fisodel objects andhimbleFunctions
(Fig. 1:H-J).

2.1 Design rationale
The goal of NIMBLE is to make it easier to implement and apply a variety of algorithms to any
model defined as a directed acyclic graph (DAG). For example, we might want to use (i) several
varieties of MCMC to see which is mosfhieient Brooks et al. 2011), including programmatic
exploration of valid MCMC samplers for a particular model; (ii) other Monte Carlo methods such
as sequential Monte Carlo (SMC, a.k.a. “particle filte3tucet et al.2001) or importance sam-
pling; (iii) modular combinations of methods, such as combination of particle filters and MCMC in
state-space time-series modélsdrieu et al, 2010 or combination of Laplace approximation and
MCMC for different levels of the model; (iv) algorithms for maximum likelihood estimation such
as MCEM and data clonind-€le et al, 2007 Jacquier et al.2007 de Valping 2012; (v) meth-
ods for model criticism, model selection, and estimation of prediction evintari and Ojanen
2012 such as Bayesian cross-validati@gde(fand et al.1992 Stern and Cressi€000, calibrated
posterior predictive p-valuesi{ort et al, 2006 or alternatives to DIC such as WAIG\Matanabe
201Q Spiegelhalter et g12014; (vi) “likelihood free” or “plug-and-play” methods such as syn-
thetic likelihood (Wood 2010, approximate Bayesian computation (AB@arjoram et al. 2003,
or iterated filtering onides et al.2000); (vii) parametric bootstrapping of any of the above ideas;
or (viii) the same model and algorithm for multiple data sets. These are just some of many ideas
that could be listed.

There are several reasons the above kinds of methods have Ifigartdo handle in general

software. First, if one has wanted to write a package providing a new general method, one has had

ACCEPTED MANUSCRIPT
4

Downloaded by [University of Washington Libraries] at 15:57 08 June 2016

ACCEPTED MANUSCRIPT

to “reinvent the wheel” of model specification. This means deciding on a class of allowed models,
writing a system for specifying the models, and writing the algorithm to use that system. Creating
model specification systems for each packagefidit and tangential to the statistical algorithms
themselves. It also results in multipleffidirent systems for specifying similar classes of models.
For example, Ime4Rates et al.2014, MCMCglmm (Hadfield 2010, R-INLA (Martins et al,

2013, and others each use dfdrent system for GLMM specification. We desired a system with
the flexibility of BUGS for declaring a wide range of models, while allowinffetient algorithms

to use the same representation of a given model.

A second limitation of current designs arises from the tension between expressing algorithms
easily in a high-level language and obtaining good computational performance. High-level lan-
guages, especially R, can be slow, but low-level languages like I@quire much greater imple-
mentation &ort and customization to flerent problems. A common solution to this problem has
been to write computationally intensive steps in a low-level language and call them from the high-
level language. This results in code that is less general and less accessible to other developers.
Most of the general MCMC packages represent an extreme case of this phenomenon, with the al-
gorithms hidden in a “black box” unless one digs into the low-level code. We wanted to keep more

programming in a high-level language and use compilation to achigeeeacy.

2.2 Specifying models: Extending the BUGS language

We chose to build upon the BUGS language because it has been widely adoptedet al,
2009. Many books use BUGS to teach Bayesian statistical modeling (&ugcaster2004 Kery

and Schaul2011; Vidakovic, 2011), and domain scientists find that it helps them to reason clearly
about modelsKery and Schauf2011). Many users of the BUGS packages think of BUGS as
nearly synonymous with MCMC, but we distinguish BUGS as a DSL for model specification from
its use in MCMC packages. Thefllirences between BUGS dialects in JAGS, OpenBUGS, and
WInBUGS are not important for this paper.

2.2.1 BUGS, model definitions, and models
When NIMBLE processes BUGS code (Fig. 1:A), it extracts all semantic relationships in model
declarations and builds two primary objects from them. The firstisd®1l definition object

(Fig. 1:B), which includes a representation of graph nodes (also cadledesin graph theory)

ACCEPTED MANUSCRIPT
5

Downloaded by [University of Washington Libraries] at 15:57 08 June 2016

ACCEPTED MANUSCRIPT

and edges. The second ismadel object (Fig. 1:C), which contains functions for investigating
model structure (Fig. 1:C1), objects to store values of model variables (Fig. 1:C2) and sets of
functions for model calculations and simulations (Fig 1:C3). @méel definition can create
multiple models with identical structure. Normally a user interacts only withtibdel object,

which may use itsiodel definition objectinternally (Fig. 1: brown arrow from C1 to B).

At this point, it will be useful to introduce several conceptmoflel definition objects and
model objects designed to accommodate the flexibility of BUGS. Each BUGS declaration creates
anode which may be stochastic or deterministic (“logical” in BUGS). For example, ryddg
may be declared to follow a normal distribution with meanand standard deviatiosigma (Fig
1:A). That would makenu andsigma parentsof y[3] andy[3] adependenfor dependengyof
mu andsigma. NIMBLE usesvariableto refer to a possibly multivariate object whose elements
represent one or more nodes. For example, the variabiieludes all nodes declared for one or
more elements of (e.g.,y[1], y[2], y[3]). A node can be multivariate, and such nodes can
be occur arbitrarily in contiguous scalar elements of a variable. Groups of nodes in a variable
may be declared by iteration, such that their role in the model follows a pattern, but they may
also be declared separately, so it cannot be assumed in later processing that they do follow a pat-
tern. Themodel definition uses abstractions for variables, nodes, and their graph relationships
that supports handling of interesting cases. For example, a program may need to determine the
dependencies of just one element of a multivariate node, even though that element is not itself a
node.

Processing BUGS code in a high-level language like R facilitates some natural extensions to
BUGS. First, NIMBLE makes BUGS extensible by allowing new functions and distributions to be
provided amimbleFunctions. Second, NIMBLE can transform a declared graph inftedent,
equivalent graphs that may be needed fdiedent implementation contexts. For example, NIM-
BLE implements alternative parameterizations for distributions by automatically inserting nodes
into the graph to transform from one parameterization to another. If the function that ultimately
executes gamma probability density calculations needsahe parameter but the BUGS code de-
clares a node to follow a gamma distribution usingghele parameter (related by ratel/scale),

a new node is inserted to calculatgscale, which is then used as the needed gammaee. If

ACCEPTED MANUSCRIPT
6

Downloaded by [University of Washington Libraries] at 15:57 08 June 2016

ACCEPTED MANUSCRIPT

any other declaration invokes the same reparameterization, it will use the same new node. An-
other important, optional, graph transformation occurs when the parameter of a distribution is an
expression. In that case a separate node can be created for the expression’s value and inserted for
use where needed. This is useful when an algorithm needs access to the value of a parameter for a
particular node, such as for conjugate distribution relationships used in Gibbs sampling and other
contexts. A third extension is that BUGS code can be used to define a set of alternative models
by including conditional statements (i.e.f-then-else) that NIMBLE evaluates (in R) when
themodel definition is created. This avoids the need to copy and modify entire BUGS model
definitions for each alternative model, the standard practice when using previous BUGS packages.

NIMBLE uses a more general concept adita than previous BUGS packages. In previous
packages, a model cannot be defined without its data. In NIMBlaEa is a label for the role
played by certain nodes in a model. For example, nodes labeled as data are excluded from calls
to simulate new values into the model by default, to avoid over-writing observed values, but this
default can be over-ridden by a programmer who wishes to simulate fake data sets from the model.
The data label is distinct from the actualluesof nodes labeled as data, which can be program-
matically changed. For example, one might want to iterate over multiple data sets, inserting each
one into the data nodes of a model and running an algorithm of interest for each.

At the time of this writing, some BUGS features are not implemented. Most notably, NIMBLE

does not yet allow stochastic indexing, i.e., indices that are not constants.

2.2.2 Howmodel objects are used

A model object is used in two ways from R gfod nimbleFunctions. First, one may need to
guery node relationships, a common step in setup code (Fig 1. brown arrow from E to C1). For
example, considermimbleFunction for a Metropolis-Hastings MCMC sampler (shown in detail
later). In one instance, it may be needed to sample a node eailed, in another to sample a

node callek[3, 5], and so on. We refer to the node to be sampled atatiget node The setup

stage of thenimbleFunction can query thenodel object to determine what stochastic nodes
depend on the target node and save that information for repeated use by run-time code. Or it may
be that an R function needs to queryedel object, for example to determine if it conforms

to the requirements for a particular algorithm. The implementation ohtldel uses itanodel

ACCEPTED MANUSCRIPT
7

Downloaded by [University of Washington Libraries] at 15:57 08 June 2016

ACCEPTED MANUSCRIPT

definition to respond to such queries, but thianbleFunction programmer is protected from
that detalil.

Other examples of model queries include determining:

e Topologically sorted order of nodes, which means an order valid for sequential calculations

or simulations.

¢ All nodes or variables in the model of a particular type, such as stochastic, deterministic,

andor data nodes.

e The position of nodes in the model: e.thp nodes have no stochastic parerd@sdnodes

have no stochastic dependents; &tdntnodes have stochastic parents and dependents.

e The nodes contained in an arbitrary subset of variable elements. For exaifijalé] may
represent the three scalar noads], x[4], andx[5], or it may represent one scalar node

x[3] and one multivariate node[4: 5], or other such combinations.

¢ Nodes or expressions with certain semantic relationships, such as the node or expression for

therate parameter of a gamma distribution.

e A variety of kinds of dependencies from a set of nodes. For example, stochastic dependen-
cies (also called “Markov blankets”) include all paths through the graph terminating at, and
including, stochastic nodes. These are needed for many algorithms. In other cases, stochas-
tic dependencies without data nodes are needed, such as for one time-step of a particle filter.
Deterministic dependencies are like stochastic dependencies but omit the stochastic nodes
themselves. This kind of dependency is useful following the assignment of a value to a node

to ensure descendent stochastic nodes use updated parameter values.

The second wayodel objects are used is to manage node values and calculations, both of
which are commonly needed in run-time functions (Fig 1:F2).mddlel object contains each
model variable and any associated log probabilities (Fig 1:C2). It also can access functions for
calculating log probabilities and generating simulations for each node (Fig 1:C3). These functions
are constructed asimbleFunctions from each line of BUGS code. Specifically, each node has a

nimbleFunction with four run-time functions:

ACCEPTED MANUSCRIPT
8

Downloaded by [University of Washington Libraries] at 15:57 08 June 2016

ACCEPTED MANUSCRIPT

e calculate: For a stochastic node, this calculates the log probability mass or density func-
tion, stores the result in an element of the corresponding log probability variable (Fig. 1:
C2), and returns it. For a deterministic nod@lculate executes its computation, stores

the result as the value of the node, and returns 0.

e calculateDiff: This is like calculate except that for a stochastic node it returns the
difference between the new log probability value and the previously stored value. This is

useful for iterative algorithms such as Metropolis-Hastings-based MCMC.

e simulate: For a stochastic node, this generates a draw from the distribution and stores it as
the value of the nodesimulate has no return value. For a deterministic nogtigulate is

identical tocalculate except that it has no return value.

e getLogProb: For a stochastic node, this returns the currently stored log probability value

corresponding to the node. For a deterministic node, this returns O.

A model object has functions of the same names to call each of these node functions for an ordered
sequence of nodes. With the exceptiorsbiulate, these return the sum of the values returned

by the corresponding node functions (e.g., the sum of log probabilitiesaficrulate). A typical

idiom for model-generic programming is to determine a vector of nodes by inspecting the model

in setup code and then use it for the above operations in run-time code.

2.2.3 modelValues objects for storing multiple sets of model values

A common need for hierarchical model algorithms is to store multiple sets of values for multiple
model variables, possibly including their associated log probability variables. NIMBLE provides
amodelValues data structure for this purpose. Whenalel definition is created, it builds

a specification for the relatagsbdelValues class. When aodel object is created, it includes

an object of themodelValues class as a default location for model values. NewlelValues

classes and objects can be created with whatever variables and types are needed. Examples of
uses ofmodelValues objects are: storing the output of MCMC; storing a set of simulated node
values for input to importance sampling; and storing a set of “particle” values and associated log

probabilities for a particle filter.

ACCEPTED MANUSCRIPT
9

Downloaded by [University of Washington Libraries] at 15:57 08 June 2016

ACCEPTED MANUSCRIPT

2.3 Programming with models

One can use model objects arbitrarily in R, but NIMBLE'’s system for model-generic program-
ming is based omimbleFunctions (Fig 1:D). Separate function definitions for the two eval-
uation stages — ongetup function and one or more run-time functions — are written within the
nimbleFunction (Fig 1:D1,D2). The purpose ofsetup function is tospecializeanimbleFunction

to a particulamodel object, nodes, or whatever other arguments are taken byethwe function.

This typically involves one-time creation of objects that can be used repeatedly in run-time code.
Such objects could be results from querying the model about node relationships, specializations
of othernimbleFunctions, newmodelValues objects, or results from arbitrary R code. When
animbleFunction is called, the arguments are passed tostdteup function, which is evaluated

in R (Fig 1.E). ThenimbleFunction saves the evaluation environment and creates the return ob-
ject. The return object is an instance of a custom-generated class whose member functions are the
run-time function(s) (Fig 1:F).

The two-stage evaluation afimbleFunctions is similar to a function object (functor) system:
thenimbleFunction is like an implicit class definition, and calling it is like instantiating an object
of the class with initialization steps done by thetup function. However theimbleFunction
takes care of steps such as determining which objects created dating evaluation need to be-
come member data in a corresponding class definition and determining their types from specialized
instances of theimbleFunction. As a result, the programmer can focus on higher level logic.

The run-time functions include a default-nameach function and arbitrary others. These are
written in the NIMBLE DSL, which allows them to be evaluated natively in R (Fig 1:G) or com-
piled into G++ class methods (Fig 1:H). The former allows easier debugging of algorithm logic,
while the latter allows much faster execution. It is also possible to omis¢heap function and
provide a singlerun function, which yields a simple function in the NIMBLE DSL that can be
compiled to G-+ but has no first-stage evaluation and hence no specialization. Fonbddhs
andnimbleFunctions, the R objects that use compiled or uncompiled versions provide a largely
identical interface to the R user.

The NIMBLE DSL supports control afiodel andmodelValues objects, common math op-

erations, and basic flow control. Controlmmdédel objects includes accessing values of nodes and

ACCEPTED MANUSCRIPT
10

Downloaded by [University of Washington Libraries] at 15:57 08 June 2016

ACCEPTED MANUSCRIPT

variables as well as callingalculate, calculateDiff, simulate, andgetLogProb for vectors

of nodes. With these basic tools, a run-time function gperatea model: get or set values, simu-

late values, and control log probability calculations. UsaafelValues objects includes setting

and accessing specific values and copying arbitrary groups of values betaddnandor other
modelValues objects using the speciabpy operation. Together these usesnotlelValues fa-

cilitate iteration over sets of values for use imalel object. For example,modelValues object

might contain the “particle” sample of a particle filter, and the run function could iterate over them,
using each one in the model for some simulation or calculation. Supported math operations include
basic (vectorized) math, linear algebra, and probability distribution calculations.

The two-stage evaluation system works naturally whenminéleFunction needs to use
othernimbleFunctions. OnenimbleFunction can specialize anoth@timbleFunction in its
setup code, or take it as aetup argument, and then use it in run-time code. In addition one can
create vectors afimbleFunctions. There is a simpleimbleFunction class inheritance system
that allows labeling of dferentnimbleFunctions that have the same run-time function proto-
type(s). For example, aimbleFunction for MCMC contains a vector ofiimbleFunctions,
each of which updates (samples) some subset of the model. ThenlattereFunctions inherit
from the same base class. This is a light burden for the NIMBLE programmer and allows the
NIMBLE compiler to easily generate a simple-€ class hierarchy. One can also create numeric
objects, lists of same-type numeric objects, and customizddlValues objects insetup code
for use in run-time code.

The nimbleFunction system is designed to look and feel like R in many ways, but there
are important dferences. Thaetup function does not have a programmer-defined return value
because thaimbleFunction system takes charge by returning a specializétbleFunction
(ready for run-time function execution) after calling #gstup function. More importantly, the
run-time function(s) have some highly non-R-like behavior. Facient G++ performance, they
pass arguments by reference, opposite to R’s call-by-value semantics. To support the static typing
of C++, once an object name is used it cannot subsequently be assignedteryenthitype object.

And type declarations of arguments and the return value are required in order to simplify compiler

implementation. To a large extent, other types are inferred from the code.

ACCEPTED MANUSCRIPT
11

Downloaded by [University of Washington Libraries] at 15:57 08 June 2016

ACCEPTED MANUSCRIPT

2.4 The NIMBLE compiler

A thorough description of the NIMBLE compiler is beyond the scope of this paper, but we provide
a brief overview of hownimbleFunctions andmodels are mapped to €+ and how NIMBLE
manages the use of the compiled-€ The NIMBLE compiler generates a+G class definition for
animbleFunction. Results ofsetup code that are used in run-time code are turned into member
data. The default-nameadin member function and other explicitly defined run-time functions are
turned into G-+ member functions. Once the+@ code is generated, NIMBLE calls the+&
compiler and loads the resulting shared object into R. Finally, NIMBLE dynamically generates an
R reference class definition to provide an interface (using active bindings) to all member data and
functions of objects instantiated from compilee-€(Fig 1:J). This creates an object with identical
interface (member functions) as its uncompiled counterpart for the R user. When there are multiple
instances (specializations) of the samiebleFunction, they are built as multiple objects of the
same G-+ class. If animbleFunction is defined with nasetup code, then there is no first-stage
evaluation, and the corresponding-€is a function rather than a class.

Compilation ofmodels involves two components. Each line of BUGS code is represented as a
custom-generatatimbleFunction with calculate, calculateDiff, simulate, andgetLogProb
run-time functions. These are compiled like any othénbleFunction, the only diference be-
ing inheritance from a common base class. This facilitates NIMBLE’s introduction of extensibility
for BUGS by allowing new functions and distributions to be providediashleFunctions. The
variables of anodel andmodelValues are implemented by generating simple-€classes with
appropriate member objects. LikémbleFunctions, bothmodels andmodelValues objects are
automatically interfaced via R objects that have similar interfaces to their uncompiled counterparts
(Fig 2:1).

For the most part, the compiler infers types and dimensionality of numeric variables and gen-
erates code for run-time size-checking and resizing. The exceptions include required declaration
of run-time argument types and the return type as well as situations where size inference is not
easy to implement. NIMBLE includes a library of functions and classes used in generated C
Vectorized math and linear algebra are implemented by generating code for the Eigdibi@ry

(Guennebaud, Jacob, et,&010. Basicfor-loops for numeric iterators and basic flow control

ACCEPTED MANUSCRIPT
12

Downloaded by [University of Washington Libraries] at 15:57 08 June 2016

ACCEPTED MANUSCRIPT

usingif-then-else anddo-while constructs are supported. The actual compilation processing
converts run-time code into an abstract syntax tree (AST) with an associated symbol table, which
are annotated and transformed into a+Csyntax tree. A set of R classes for representing-C
code was developed for this purpose.

Compilation ofnimbleFunctions harnesses completed first-stage evaluation (specialization)
in several ways. First, contents of objects created duéngp evaluation can be directly inspected
to determine types. Second, the compiler ys&dial evaluationto simplify the C++ code and
types needed. For example, the compiler resolves nodesiigl objects at compile time so that
the G++ code can find the right object by simple pointer dereferencing. It also converts vectors
of nodes into dierent kinds of objects depending on how they are used in run-time code. Such
partial evaluation is done in theetup environment, essentially as a compiler-generated extension

to thesetup code.

3 Examples
In this section we present some examples of model-generic programming and the algorithm com-
position it supports. This section includes more implementation details, including some code for
discussion. Specifically, we show how importance sampling and Metropolis-Hastings sampling are
implemented aaimbleFunctions. Then we show how an MCMC is composed of multiple sam-
plers that can be modified programmatically from R. Finally we show an example of composing
an algorithm that uses MCMC as one component, for which we choose MCEM. Complete code to
replicate the examples is provided in the supplement.

As a model for illustration of these algorithms, we choose the pump model from the Win-
BUGSOpenBUGS suite of examplekynn et al, 2012 because it is simple to explain and use.
We assume some familiarity with BUGS. The BUGS code is:

pumpCode <- nimbleCode({
for (i in 1:N){
theta[i] ~ dgamma(shape = alpha, rate = beta) ## random effects
lambda[i] <- theta[i]*t[i] ## t[i] is explanatory data

x[i] ~ dpois(lambdali]) ## x[i] is response data

ACCEPTED MANUSCRIPT
13

Downloaded by [University of Washington Libraries] at 15:57 08 June 2016

ACCEPTED MANUSCRIPT

}
alpha ~ dexp(1.0) ## priors for alpha and beta
beta ° dgamma(0.1, 1.0)

B

Herex andt are to be provided as data (not showtheta are random fects, ancalpha and
beta are the parameters of interest. We have written the gamma distributiathdarn[i] us-
ing named parameters to illustrate this extension of BUGS. Creation of a model object called

pumpModel from thepumpCode is shown in the supplement.

3.1 Importance sampling
Importance sampling is a method for approximating an expected value from a Monte Carlo sam-
ple (Givens and Hoeting2012. It illustrates the glaring gap between algorithms and software:
although it is an old and simple idea, it is not easily available for general model structures. It
involves sampling from one distribution and weighting each value so the weighted sample repre-
sents the distribution involved in the expected value. It can be used to approximate a normalizing
constant such as a likelihood or Bayes factor. (It can also be combined with a resampling step to
sample from a Bayesian posterior, i.e., Samplmgortance Resampling.)

For the pump model, suppose we want to use importance sampling to approximate the marginal
likelihood of x[1: 3], which requires integrating over the first three randdfads,theta[1:3],
given values ofalpha andbeta. This is an arbitrary subset of the model for illustration. To
do so one simulates a sampleeta[1:3]x ~ Pis(theta[1:3]), k = 1...m, wherePs is a
known distribution. For mathematical notation, we are mixing the code’s variable names with
subscripts, so thatheta[1:3]y is thek!N simulated value otheta[1:3]. Then the likelihood is

approximated as

m

P(x[1:3]) ~ n%z P(x[1:3][theta[1:3])
k=1

P(theta[1:3]y)
Pis(theta[1:3]y)

(1)

whereP(-) indicates the part of the model’s probability density or mass labeled by its argument.
The ratio on the right is the importance weight for #8 value of theta[1:3]. To keep the

example concise, we assume the programmer already has a function (in R or NIMBLE) to sample

ACCEPTED MANUSCRIPT
14

Downloaded by [University of Washington Libraries] at 15:57 08 June 2016

ACCEPTED MANUSCRIPT

from P;s and calculate the denominator of the weights. Our example shows the use of NIMBLE to
calculate {) from those inputs.

Model-generic NIMBLE code for calculation ot is as follows:

importanceSample <- nimbleFunction(
setup = function(model, sampleNodes, mvSample) {

calculationNodes <- model$getDependencies(sampleNodes)

s
run = function(simulatedLogProbs = double(1)) {
ans <- 0.0 # (D)
for(k in 1l:getsize(mvSample)) { # (2)
copy(from = mvSample, to = model, # (3)
nodes = sampleNodes, row = k)
logProbModel <- model$calculate(calculationNodes) # (4)
if(!is.nan(logProbModel)) # (5
ans <- ans + exp(logProbModel - simulatedLogProbs[k])
}
return(ans/getsize(mvSample)) # (6)
returnType (double(0)) # (7)
}

)

The specialization step for our example would fenpIS <- importanceSample(model =
pumpModel, sampleNodes = "theta[1l:3]", mvSample = ISsample). Note that the argu-
ments taimportanceSample are defined in itsetup function.model is given as th@umpModel

object created abovesampleNodes — the set of nodes over which we want to integrate by im-

portance sampling — is provided as a character vector using R’s standard variable subset notation.

The ISsample object passed as therSample argument is amodelValues object for providing
the values sampled frofs. It does not need to be populated with sample values untit-tine
function is called. Rather, at tltup stage, it just bindavSample to (a reference ta)Ssample

for use in therun code.

ACCEPTED MANUSCRIPT
15

Downloaded by [University of Washington Libraries] at 15:57 08 June 2016

ACCEPTED MANUSCRIPT

The only processing done in theetup code is to query the model for the vector of or-
dered stochastic dependencies of #a@pleNodes. These are needed in thn code to cal-
culate the necessary part of the model in topologically sorted order. The model is queried using
getDependencies, and the result saved talculationNodes. Inthis casecalculationNodes
willturn outto be g¢heta[1], theta[2], theta[3], lambda[1], lambda[2], lambda[3],
x[1], x[2], x[3]). This means thatodel$calculate(calculationNodes) will return
log(P(x[1:3]|theta[1:3]y)P(thetal[1:3]y)).

The run code illustrates several features of the NIMBLE DSL. It shows type declaration of
thesimulatedLogProbs argument as a vector of doubles (double-precision numbers) and (7) the
return type as a scalar doublgimulatedLogProbs represents the vector &s(theta[1:3]y)
values. In another implementation of importance sampling, this could be includedivsheple
object, but we use it here to illustrate a run-time argument. The body afithdunction (1)
initializes the answer to zero; (2) iterates over the samples$ample; (3) copies values of the
sampleNodes from mvSample into the model; (4)alculates the sum of log probabilities of
calculationNodes; and (5) uses basicf-then logic and math to accumulate the results.

The most important insight abottportanceSample is that it is model-generic: nothing in

thesetup code orrun code is specific to the pump model or nodéetal[1:3].

3.2 Metropolis-Hastings samplers
Next we illustrate a Metropolis-Hastings sampler with a normally-distributed random-walk pro-

posal distribution. The model-generic code for this is:

simple_MH <- nimbleFunction(

setup = function(model, currentState, targetNode) {
calculationNodes <- model$getDependencies(targetNode)

s

run = function(scale = double(0)) {
logProb_current <- model$getLogProb(calculationNodes) # (D
proposalValue <- rnorm(l, mean = model[[targetNode]], sd = scale) # (2)
model [[targetNode]] <<- proposalValue # (3)

logProb_proposal <- model$calculate(calculationNodes) # (4

ACCEPTED MANUSCRIPT
16

Downloaded by [University of Washington Libraries] at 15:57 08 June 2016

ACCEPTED MANUSCRIPT

log_Metropolis_Hastings_ratio <- logProb_proposal - logProb_current # (5)

accept <- decide(log_Metropolis_Hastings_ratio) # (6)
if(accept)
copy(from = model, to = currentState, row = 1, # (7a)

nodes = calculationNodes, logProb = TRUE)

else
copy(from = currentState, to = model, row = 1, # (7b)
nodes = calculationNodes, logProb = TRUE)
return(accept)

returnType(integer(0))
D,

Suppose we want a sampler faieta[4] in the pump model. An example specialization step
would betheta4sampler <- simple MH(model = pumpModel, currentState = mvState,
targetNode = "theta[4]"). HeremvState is amodelValues object with variables that match
those in the model, with only one of each. This is used to store the current statemotittie We
assume that on entry to thren function,mvState will contain a copy of all model variables and
log probabilities, and on exit theun function must ensure that the same is true, reflecting any up-
dates to those states. As in the importance sampling example, the only real work to be done in the
setup function is to query the model to determine the stochastic dependenciestattetNode.

In this casecalculationNodes will be (theta[4], lambda[4], x[4]).

The run function illustrates the compactness of expressing a Metropolis-Hastings algorithm
using language elements likalculate, getLogProb, copy, and list-like access to a model node.
Thescale run-time argument is the standard deviation for the normally distributed proposal value.
In the full, released version of this algorithrsafnpler RW), the setup code includes some error
trapping, and there is additional code to implement adaptation of¢hée parameterKlaario
et al, 200) rather than taking it as a run-time argument. The simplified version here is less
cluttered for illustration. In addition the full version is morffigient by usingcalculateDiff
instead of botlyetLogProb andcalculate, but here we use the latter to illustrate the steps more

clearly.

ACCEPTED MANUSCRIPT
17

Downloaded by [University of Washington Libraries] at 15:57 08 June 2016

ACCEPTED MANUSCRIPT

The lines ofrun (1) obtain the current sum of log probabilities of the stochastic depen-
dents of the target node (including itself); (2) simulate a new value centered on the current value
(model[[targetNode]]); (3) put that value in the model; (4) calculate the new sum of log proba-
bilities of the same stochastic dependents; (5) determine the log acceptance probability; (6) call the
utility function decide that determines the accéeject decision; and (7) copy from thedel to
thecurrentState for (7a) an acceptance or (7b) vice-versa for a rejection. Agairsdbep and
run functions are fully model-generic.

This example illustrates natural R-like access to nodes and variables in models, such as
model [[targetNode]], but making this model-generic leads to some surprising syntax. Every
node has a unique character name that includes indices, suathesa[4]". This leads to the
syntaxmodel[["theta[4]"]], rather thamodel [["theta"]][4]. The latter is also valid, but
it is not model-generic because, in another specializaticrimple MH, targetNode may have a
different number of indices. For exampletdrgetNode is "y[2, 3]",model[[targetNode]]
accesses the same valuemaglel[["y"]1]1[2,3]. The NIMBLE DSL also provides vectorized

access to groups of nodes #nrdvariables.

3.3 MCMC

To illustrate a full set of MCMC samplers for a model, we do not proviiiebleFunction code

as above but rather illustrate the flexibility provided by managing sampler choices from R. The first
step in creating an MCMC is to inspect the model structure to decide what kind of sampler should
be used for each node or block of nodes. An R functmmigureMCMC) does this and returns an
object with sampler assignments, which can be modified before creatingrb&eFunctions to
execute the MCMC. Since this is all written in R, one can control its behavior, modify the code,
or write a completely new MCMC system. Once the user is happy with the MCMC configuration,
the corresponding suite of specializetinbleFunctions can be built, compiled, and executed.

In the case of the pump model (see supplement), we choose for illustration to start with normal
adaptive random walk samplers rather than Gibbs samplers. It is apparent from Figure 2 (left
panel) that the posterior is correlated betwegépha andbeta. One might then customize the
sampler choices using this knowledge. For example, one can insert a bivariate (block) adaptive

random walk sampler and then re-compile the MCMC. This results in improved mixing, reflected

ACCEPTED MANUSCRIPT
18

Downloaded by [University of Washington Libraries] at 15:57 08 June 2016

ACCEPTED MANUSCRIPT

as lower autocorrelations of the chain (Fig. 2, middle panel) and higfestiee sample size per

second of computation (Fig. 2, right panel).

3.4 Monte Carlo Expectation Maximization

MCEM is a widely known algorithm for maximum likelihood estimation for hierarchical models. It

is used instead of the EM algorithm when the “expectation” step cannot be determined analytically.
To our knowledge, there has been no previous implementation of MCEM that can automatically be
applied to the range of model structures provided by BUGS. MCEM works by iterating over two
steps: (1) MCMC sampling of the latent states given fixed parameters (top-level nodes); and (2)
optimization with respect to (non-latent) parameters of the average log probability of the MCMC
sample. NIMBLE provides auildMCEM function in which step (1) is implemented by creating an
MCMC configuration with samplers only for latent states, and step (2) is implemented by calling
one of R’s optimizers with a compiletimbleFunction as the objective function. The top level

of control of the algorithm is an R function that alternates between these steps. For the pump
model, the MCEM quickly settled within 0.01 of the published values of 0.82 and 1.24 fdra

andbeta (George et a).1993, which we consider to be within Monte Carlo error.

4 Discussion
We have introduced a system for combining a flexible model specification language with a high-
level algorithm language for model-generic programming, all embedded within R. Numerous other
algorithms can be envisioned for implementation with this system, such as those listed in section
(2.1) above.

However, several important challenges remain for building out the potential of NIMBLE. First,
not all features of BUGS, or of graphical models in general, have so far been incorporated. A
particular challenge isficient handling of stochastically indexed dependencies, such as when
discrete mixture components are latent states. This represents a dynamic graph structure and so
will require a more flexible system for representing dependencies. Second, several packages have
made great use of automatidiérentiation, notably ADMBIMB and Stan. Because the NIMBLE
compiler generates €+ code, it would be possible to extend it to generate code that uses an

automatic diferentiation library. Third, there is a need to include more compilable functionality in

ACCEPTED MANUSCRIPT
19

Downloaded by [University of Washington Libraries] at 15:57 08 June 2016

ACCEPTED MANUSCRIPT

the NIMBLE DSL, such as use of R’s optimization library from generated CAn algorithm like
Laplace approximation would be most natural if optimization and derivatives are available in the
DSL. Finally, there is potential to extend the NIMBLE compiler in its own right as a useful tool
for programming #icient computations from R even when there is no BUGS code involved.

The choice to embed a compilable domain-specific language within R revealed some benefits
and limitations. R’s handling of code as an object facilitates processing of BUGS models and
nimbleFunction code. It also allows the dynamic construction and evaluation of class-definition
code for eaclmodel andnimbleFunction and their G-+ interfaces. And it provides many other
benefits, perhaps most importantly that it allows NIMBLE to work within such a popular statistical
programming environment. On the negative side, NIMBLE needs some fundamentidhgali
behavior than R, such as call-by-reference and functions that work by ‘St (e.g., modify-
ing an object without copying it). Such inconsistencies make NIMBLE something of a conceptual
hybrid, which could be viewed as practical arfteetive by some or as inelegant or confusing by
others. And for large models, NIMBLE’s compilation processinfiens from R’s slow execution.

We built upon BUGS as a model specification language because it has become so widely used,
but it has limitations. First, BUGS uses distribution notation slightlyedent from R, so com-
bining BUGS and R syntaxes in the same system could be confusing. In particular some BUGS
distributions use dierent default parameterizations than R’s distributions of the same or similar
name. Second, BUGS does not support modular model programming, such as compactly declaring
common model substructures in a way that re-uses existing code. It also does not support vector-
ized declarations of scalar nodes that follow the same pattern (it redoirdsops instead). These
are extensions that could be built into NIMBLE in the future. Other extensions, such as declaration
of single multivariate nodes for vectorized calculations, were implemented almost automatically as
a result of NIMBLE's design. Third, one could envision powerful uses of programmatically gener-
ating model definitions rather than writing them in static code. This could be done via NIMBLE’s
model definition system in the future.

Other quite distinct lines of research on software for graphical models come from “probabilistic
programming” &orts by computer scientists, such as Chu@Gbgdman et al.2008 and BLOG

(Milch et al, 200§. Their motivations are somewhatfi@dirent, and their programming style and

ACCEPTED MANUSCRIPT
20

Downloaded by [University of Washington Libraries] at 15:57 08 June 2016

ACCEPTED MANUSCRIPT

concepts would be new to many applied statisticians. It will be interesting to see where these two

distinct motivations for similar programming language problems lead in the future.

SUPPLEMENTARY MATERIAL

R code for examples: R code to run examples with NIMBLE package installed. (R code file)

5 Acknowledgements
We thank Jagadish Babu for contributions to an early, pre-release version of NIMBLE. This work
was supported by grant DBI-1147230 from the US National Science Foundation and by support to

DT from the Berkeley Institute for Data Science.

ACCEPTED MANUSCRIPT
21

Downloaded by [University of Washington Libraries] at 15:57 08 June 2016

ACCEPTED MANUSCRIPT

References

Andrieu, C., A. Doucet, and R. Holenstein (2010). Particle Markov chain Monte Carlo methods.
Journal of the Royal Statistical Society: Series B (Statistical Methodolod$),7269-342.

Banerjee, S., B. P. Carlin, and A. E. Gelfand (2008)ierarchical Modeling and Analysis for
Spatial Data(1st ed.). Boca Raton, Fla: Chapman and {#RC.

Bates, D., M. Maechler, B. Bolker, and S. Walker (2014)e4: Linear mixed-gects models using
Eigen and S4R package version 1.1-7.

Belitz, C., A. Brezger, T. Kneib, S. Lang, and N. Umlauf (201BayesX: Software for Bayesian

Inference in Structured Additive Regression Modgkyrsion 2.1.

Brooks, S., A. Gelman, G. Jones, and X.-L. Meng (Eds.) (20Handbook of Markov Chain
Monte Carlo(1st ed.). Boca Raton: Chapman and HaRC.

Cressie, N. and C. K. Wikle (2011 ptatistics for Spatio-Temporal Data ed.). Wiley.

de Valpine, P. (2012). Frequentist analysis of hierarchical models for population dynamics and
demographic datalournal of Ornithology 152393-408.

Doucet, A., N. De Freitas, and N. Gordon (2008equential Monte Carlo methods in practice
New York: Springer.

Elliott, C., S. Finne, and O. de Moor (2003). Compiling embedded langualgesnal of Func-

tional Programming 1@).

Fournier, D. A., H. J. Skaug, J. Ancheta, J. lanelli, A. Magnusson, M. N. Maunder, A. Nielsen,
and J. Sibert (2012). AD Model Builder: using automatitetientiation for statistical inference
of highly parameterized complex nonlinear modédpatimization Methods and Software(2J,
233-249.

Gelfand, A. E., D. K. Dey, and H. Chang (1992). Model determination using predictive distribu-
tions with implementation via sampling-based method<Bagesian statistics,,$pp. 147-167.

Oxford Univ. Press, New York.

ACCEPTED MANUSCRIPT
22

Downloaded by [University of Washington Libraries] at 15:57 08 June 2016

ACCEPTED MANUSCRIPT

Gelman, A., J. Hwang, and A. Vehtari (2014). Understanding predictive information criteria for
Bayesian modelsStatistics and Computing 28), 997-1016.

George, E. I, U. E. Makov, and A. F. M. Smith (1993). Conjugate likelihood distributiSonan-
dinavian Journal of Statistics ZR), 147—-156.

Gilks, W. R., A. Thomas, and D. J. Spiegelhalter (1994). A language and program for complex
Bayesian modellingJournal of the Royal Statistical Society. Series D (The Statisticiafi))43
169-177.

Givens, G. H. and J. A. Hoeting (2012C.omputational Statistic& edition ed.). Hoboken, N.J:
Wiley.

Goodman, N., V. Mansinghka, D. Roy, K. Bonawitz, and J. Tenenbaum (2008). Church: a language
for generative models. IRroceedings of the Twenty-Fourth Conference Annual Conference on

Uncertainty in Artificial Intelligence (UAI-Q&orvallis, Oregon, pp. 220-229. AUAI Press.
Guennebaud, G., B. Jacob, et al. (2010). Eigen v3. /fdtgen.tuxfamily.org.

Haario, H., E. Saksman, and J. Tamminen (2001). An adaptive Metropolis algorithm.
Bernoulli 7(2), 223-242.

Hadfield, J. D. (2010). MCMC methods for multi-response generalized linear mixed models: The
MCMCglmm R packageJournal of Statistical Software 83), 1-22.

Hjort, N. L., F. A. Dahl, and G. Hognadottir (2006). Post-processing posterior predictive p values.
Journal of the American Statistical Association {4025), 1157-1174.

Ihaka, R. and R. Gentleman (1996). R: A language for data analysis and grapbigsal of
Computational and Graphical Statistic§3), 299-314.

lonides, E., C. Breto, and A. King (2006). Inference for nonlinear dynamical systmseedings
of the National Academy of Sciences of the United States of Ameri¢49p38438-18443.

Jacquier, E., M. Johannes, and N. Polson (2007). MCMC maximum likelihood for latent state

models.Journal of Econometrics 13Z), 615—640.

ACCEPTED MANUSCRIPT
23

Downloaded by [University of Washington Libraries] at 15:57 08 June 2016

ACCEPTED MANUSCRIPT

Kery, M. and M. Schaub (2011)Bayesian Population Analysis using WinBUGS: A hierarchical

perspectivglst ed.). Boston: Academic Press.

Kristensen, K., A. Nielsen, C. W. Berg, H. J. Skaug, and B. Bell (2015). TMB: Automdftiereli

entiation and Laplace approximation. ArXiv e-print; in preksjrnal of Statistical Software

Lancaster, T. (2004).Introduction to Modern Bayesian Econometridst ed.). Malden, MA:
Wiley-Blackwell.

Lele, S., B. Dennis, and F. Lutscher (2007). Data cloning: easy maximum likelihood estimation
for complex ecological models using Bayesian Markov chain Monte carlo metHectsogy
Letters 1@7), 551-563.

Lele, S. R., K. Nadeem, and B. Schmuland (2010). Estimability and likelihood inference for
generalized linear mixed models using data clonidgurnal of the American Statistical Asso-
ciation 105492), 1617-1625.

Levine, R. and G. Casella (2001). Implementations of the Monte Carlo EM algoribumnal of
Computational and Graphical Statistics (B), 422—439.

Lunn, D., C. Jackson, N. Best, A. Thomas, and D. Spiegelhalter (2018 BUGS Book: A
Practical Introduction to Bayesian Analyqisst ed.). Boca Raton, FL: Chapman and HZRC.

Lunn, D., D. Spiegelhalter, A. Thomas, and N. Best (2009). The BUGS project: Evolution, critique
and future directionsStatistics in Medicine 225), 3049-3067.

Lunn, D. J., A. Thomas, N. Best, and D. Spiegelhalter (2000). WinBUGS - A Bayesian modelling

framework: Concepts, structure, and extensibil@yatistics and Computing {4), 325-337.

Marjoram, P., J. Molitor, V. Plagnol, and S. Tavar (2003). Markov chain Monte Carlo without
likelihoods. Proceedings of the National Academy of Sciences of the United States of Amer-
ica 100(26), 15324 —15328.

Martins, T. G., D. Simpson, F. Lindgren, and H. Rue (2013). Bayesian computing with INLA:
New featuresComputational Statistic& Data Analysis 6768—83.

ACCEPTED MANUSCRIPT
24

Downloaded by [University of Washington Libraries] at 15:57 08 June 2016

ACCEPTED MANUSCRIPT

Milch, B., B. Marthi, S. Russell, D. Sontag, D. L. Ong, and A. Kolobov (2006). BLOG: Prob-
abilistic models with unknown objects. In L. D. Raedt, T. Dietterich, L. Getoor, and S. H.
Muggleton (Eds.)Probabilistic, Logical and Relational Learning - Towards a Synthasian-
ber 05051 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany. Internationales Begegnungs-

und Forschungszentruriarfinformatik (IBFI), Schloss Dagstuhl, Germany.

Patil, A., D. Huard, and C. J. Fonnesbeck (2010). PyMC: Bayesian stochastic modelling in Python.
Journal of Statistical Software 8%), 1-81.

Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs

sampling.

Rompf, T. and M. Odersky (2010). Lightweight modular staging: A pragmatic approach to runtime
code generation and compiled dsls. Rroceedings of the Ninth International Conference on
Generative Programming and Component Engineer@§CE 10, New York, NY, USA, pp.
127-136. ACM.

Royle, J. and R. Dorazio (2008Mierarchical modeling and inference in ecologlyondon: Aca-

demic Press.

Rue, H., S. Martino, and N. Chopin (2009). Approximate Bayesian inference for latent Gaussian
models by using integrated nested Laplace approximatidiosirnal of the Royal Statistical
Society: Series B (Statistical Methodology)Z)1 319-392.

Spiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. van der Linde (2014). The deviance infor-
mation criterion: 12 years onJournal of the Royal Statistical Society: Series B (Statistical
Methodology) 7€3), 485-493.

Stan (2015). Stan: A €+ library for probability and sampling, version 2.9.0.

Stern, H. S. and N. Cressie (2000). Posterior predictive model checks for disease mapping models.
Statistics in Medicine 1Q7-18), 2377-2397.

ACCEPTED MANUSCRIPT
25

Downloaded by [University of Washington Libraries] at 15:57 08 June 2016

ACCEPTED MANUSCRIPT

Taha, W. and T. Sheard (1997). Multi-stage Programming with Explicit Annotationg2rdn
ceedings of the 1997 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-based
Program ManipulationPEPM '97, New York, NY, USA, pp. 203-217. ACM.

Vehtari, A. and J. Ojanen (2012). A survey of Bayesian predictive methods for model assessment,

selection and comparisofstatistics Surveys, 642—-228.

Vidakovic, B. (2011).Statistics for Bioengineering Sciences - With MATLAB and WinBUGS Sup-
port. Springer.

Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable
information criterion in singular learning theofijhe Journal of Machine Learning Research 11
3571-3594.

Wei, G. and M. Tanner (1990). A Monte-Carlo implementation of the EM algorithm and the poor
man’s data augmentation algorithm®urnal of the American Statistical Association(451),
699-704.

Wood, S. N. (2010). Statistical inference for noisy nonlinear ecological dynamic systeais.
ture 46§7310), 1102-1104.

ACCEPTED MANUSCRIPT
26

Downloaded by [University of Washington Libraries] at 15:57 08 June 2016

ACCEPTED MANUSCRIPT

A. BUGS code D. nimbleFunction definition
mu ~ dnorm(0, sd = 1000) D1. Setup function (15! stage, written in R)
for(i in 1:3) y[i] ~ dnorm(mu, sd = sigma) D2. Run-time function(s)

(2" stage, written in NIMBLE DSL)

B. Model definition *

E. nimbleFunction called in R:
executes setup function

v 3 ’

C. Model object I / F. Specialized nimbleFunction object
F1. Results from setup function

C1. Model query functions:
Determine information about nfodel F2. Run-time function(s) (NIMBLE DSL)
variables and nodes

4 C2. Interface to modelValues object A *
for storing model variables
‘_—- G. Run and debug in R
mu:: [] logProb_mu: []
v: [T osProby: [T /
o // H. NIMBLE compiler generates
/~ C3. Model operation functions N\ / and manages C++
(specialized nimbleFunctions) - * *
mu: [y[1]:]
e calculate :
« simulate y[2l: ...] I. Compiled model object J. Compiled _
¢ getLogProb 1. Model variabl nimbleFunction object
L calculateDiff) (yi3]: .. L o Cgril:)il\:a zr'rit;g; <t J1. Member data
operation functions J2. Run-time function(s)

Figure 1: Overview of NIMBLE. Left side: A model starts as BUGS code (A), which is turned
into amodel definition object (B), which creates an uncompiteadel object (C). Right side:

A nimbleFunction starts as model-generic code (D). It is specialized to a modé¢btredt argu-
ments by executing itsetup function (E), which may inspect theodel structure (brown arrow,
using C1). This returns an uncompiled, specialingdbleFunction object (F). Its run-time
function(s) can be executed in R, using the uncompiled model (brown arrows), to debug algorithm
logic (G). Parts of thenodel andnimbleFunction (red boxes) can be compiled (H), creating
objects (I, J) that can be used from R similarly to their uncompiled counterparts. =Ccage.
Blue = R execution. Green, purple & tanUncompiled objects that run in pure R. Green arrows

= pre-compilation workflow. Red boxes & arrowscompilation workflow.

ACCEPTED MANUSCRIPT
27

Downloaded by [University of Washington Libraries] at 15:57 08 June 2016

ACCEPTED MANUSCRIPT

——— With block —— Without block

. With block . Without block

alpha
1.00 =

MCMC sample

0.75 = 7500 =
0.50 =

0.25 =

5000 =
0.00 =

beta

MCMC autocorrelation
1 1

0.5 1.0 15

. 2500 —
alpha

Effective sample size per second

0.50 =

0.25 =

0.00 = 0=

1 1 1 1

5 10 15 20 J I
Iag alpha beta

O -

Figure 2: Example of how high-level programmability and compilation allow flexible composi-
tion of eficient algorithms. This uses the “pump” model from the classic BUGS examples. Left
panel: Parameters andg show posterior correlation. Middle panel: MCMC mixing is summa-
rized using the estimated autocorrelation function. When a bivariate (block) adaptive random walk
sampler is added to the suite of univariate adaptive random walk samplers, the chain autocorrela-
tion decreases, reflecting better mixing. Right panel: Computational performance measured as the
effective sample size per second of computation time is greater with the block sampler included.

ACCEPTED MANUSCRIPT
28

	Introduction
	Overview of NIMBLE
	Design rationale
	Specifying models: Extending the BUGS language
	BUGS, model definitions, and models
	How model objects are used
	modelValues objects for storing multiple sets of model values

	Programming with models
	The NIMBLE compiler

	Examples
	Importance sampling
	Metropolis-Hastings samplers
	MCMC
	Monte Carlo Expectation Maximization

	Discussion
	Acknowledgements

